Model GTC116
Installation Guide

Gold Series Thermal Dispersion Airflow Measurement Technology

Advantage III

Gold Series by Ebtron

Installation Guide

GTC116

“Plug & Play” Transmitter with Combination RS-485 Network Output and Dual Analog Output

Document Name: IG_GTC116_R3B
Table of Contents

1 GTC116 TRANSMITTER INSTALLATION .. 4
 1.1 GTC116 Mechanical Dimensions ... 4
2 GTC116 TRANSMITTER INTERIOR VIEW/FEATURES .. 5
3 GTC116 TRANSMITTER POWER AND PROBE CONNECTIONS ... 6
 3.1 Power Transformer Selection ... 6
 3.2 Connecting Power to the Transmitter .. 6
 3.3 Connecting Sensor Probes to the Transmitter ... 7
4 GTC116 ANALOG OUTPUT AND NETWORK CONNECTIONS .. 8
 4.1 GTC116 - ANALOG OUTPUT WIRING .. 8
 4.2 GTC116 - RS-485 NETWORK WIRING CONNECTIONS ... 9
 4.2.1 GTC116 - RS-485 Network Cable Specifications .. 9
 4.2.2 GTC116 - Connecting to an RS-485 Network ... 9
 4.2.3 GTC116 - Setting Transmitter Termination for RS-485 Network 9
 4.3 GTC116 - Transmitter Setup for RS-485 Network Operation .. 9
 4.3.1 GTC116 - RS-485 Network Options and Communications Menu Settings 9
 4.3.2 GTC116 - Setting RS-485 Network Protocol .. 10
 4.3.3 GTC116 - Setting Transmitter Address .. 10
 4.3.4 GTC116 - Setting Baud Rate .. 10
 4.3.5 GTC116 - Setting Modbus Parity ... 10
 4.3.6 GTC116 - Setting BACnet Device Instance Number ... 10
 4.3.7 GTC116 - Resetting Communications Options to Factory Default Values 10
4.4 GTC116 - General Setup Options ... 12
5 GTC116 TRANSMITTER START-UP, INITIALIZATION AND SETUP MENUS 12
 5.1 Changing the System of Units - IP or SI Units .. 12
 5.2 GTC116 Transmitter Calibration .. 12
 5.3 GTC116 LCD Display Notifications .. 12
 5.4 Factory Default Menu Settings for GP1 Sensor Probes .. 13
 5.5 GTC116 Changing Factory Default Setup Menu Settings .. 14
 5.5.1 Setup Menu Options .. 14
 5.5.2 Adjusting the Low Limit Cutoff Feature ... 14
 5.5.3 Selecting Actual and Standard Output Measurement Type 14
 5.5.4 Output Scaling ... 14
 5.5.5 Changing the LCD Display from Volumetric Flow CFM to Velocity FPM 14
 5.5.6 Converting the Analog Output Signal from FPM to CFM 14
 5.5.7 Locking the Configuration Settings .. 14
 5.6 GTC116 - Alarm Features .. 15
 5.6.1 Average Alarm (AO2 ASGN=ALRM) ... 15
 5.6.2 Trouble Alarm (AO2 ASGN=TRBL) .. 15
 5.6.3 No Fault (NO FAULT=HI) .. 15
 5.6.4 Alarm Indications ... 15
 5.6.5 Low Alarm - “LO ALRM=ON” ... 15
 5.6.6 High Alarm - “HI ALRM=ON” .. 15
 5.6.7 Trouble Alarm - “AO2 ASGN=TRBL” ... 15
 5.7 GTC116 - Analog Output Type Selection and Setup .. 16
 5.7.1 GTC116 - Converting Analog Output Signal Values to Airflow and Temperature 16
 5.7.2 GTC116 - AO1/AO2 OUTPUT TEST - Sending a Test Output Signal to the Host Control System 16
 5.8 Viewing Sensor Data .. 17
 5.8.1 Viewing Sensor Data on the Local LCD Display .. 17
 5.8.2 Viewing Sensor Data via BACnet, Modbus networks or via EB-Link Reader 17
 5.8.3 Sensor Addressing and Probe Positioning ... 17
 6 SETUP MENUS .. 17
7 WIRING DIAGRAM ... 17
APPENDIX A - ADVANTAGE 3 - SETUP MENUS .. 18
APPENDIX B - GTC116 WIRING DIAGRAM .. 18
List of Figures

Figure 1. GTC116 Mechanical Dimensions ...4
Figure 2. GTC116 Transmitter Interior View/Features ..5
Figure 3. Connecting Power to the Transmitter ..6
Figure 4. Type A and Type B Transmitter Connector Panel Detail7
Figure 5. Connector Detail ..7
Figure 6. GTC116 Combination Analog/RS-485 Transmitter Interior Detail8
Figure 7. Sensor Addressing and Probe Positioning Detail ...17

List of Tables

Table 1. GTC116 Power Transformer Selection Guide ..6
Table 2. GTC116 BACnet Objects List ..11
Table 3. GTC116 Modbus Register Map ..11
Table 4. Standard “IP” and “SI” Menu Units Abbreviations12
Table 5. Factory Default Menu Settings ..13
Table 6. GTC116 Alarm Types and Notifications ..15
Table 7. GTC116 Converting Analog Output Values to Airflow/Temperature16
1 GTC116 TRANSMITTER INSTALLATION

The GTC116 transmitter is designed for use in an environment between -20°F to 120°F (-28.8°C to 48.8°C) where it will not be exposed to rain or snow. Install transmitter upright and in a field accessible location. The enclosure accepts 1/2 in. (12.7 mm) electrical fittings for signal and power wiring at both sides at the top of the enclosure.

Locate the transmitter so that the connecting cables from all of the sensor probes will reach the receptacles on the bottom of the transmitter enclosure.

⚠️ In locations exposed to direct rain and/or snow, the transmitter must be enclosed in a NEMA4 enclosure.

⚠️ Leave unobstructed space of at least 9 in. (228.6 mm) above, 2 in. (50.8 mm) to each side and 3.5 in. (88.9 mm) below the transmitter to allow for cover removal, sensor connections and heat dissipation.

⚠️ Locate the transmitter in a location that can be reached by all connecting cables from the sensor probes.

⚠️ Do not drill into the transmitter enclosure since metal shavings could damage the electronics.

1.1 GTC116 Mechanical Dimensions

![Figure 1. GTC116 Mechanical Dimensions](image-url)
2 GTC116 TRANSMITTER INTERIOR VIEW/FEATURES

Output signal terminals
(Note: The output function is dependent on which network card is installed)

LCD contrast

Transmitter status LED
(Green 1 second flash normal; 2 second flash for fault)

High accuracy A/D converter

Gold plated interconnects to optional output cards

Positive locking cable receptacles with gold interconnects

Power switch

Switching power supply conserves energy and reduces heat

Pushbutton interface simplifies field configuration
(Note: devices are plug and play and generally do not require configuration.)

Expansion port

Multiplexers independently measure sensor voltages from 1 up to 16 sensing points

Gold plated interconnects to sensor input receptacles

Figure 2. GTC116 Transmitter Interior View/Features
3 GTC116 TRANSMITTER POWER AND PROBE CONNECTIONS

3.1 Power Transformer Selection

Select a 24 VAC transformer based on the maximum power requirements indicated on the transmitter label (20 VA) or from the table below. The operating supply voltage (transmitter power “ON” with all sensor probes connected) should not be less than 22.8 VAC or greater than 26.4 VAC.

Table 1. GTC116 Power Transformer Selection Guide

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12</td>
<td>5</td>
<td>14</td>
<td>9</td>
<td>17</td>
<td>13</td>
<td>19</td>
</tr>
<tr>
<td>2</td>
<td>13</td>
<td>6</td>
<td>15</td>
<td>10</td>
<td>17</td>
<td>14</td>
<td>19</td>
</tr>
<tr>
<td>3</td>
<td>13</td>
<td>7</td>
<td>15</td>
<td>11</td>
<td>18</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>14</td>
<td>8</td>
<td>16</td>
<td>12</td>
<td>18</td>
<td>16</td>
<td>20</td>
</tr>
</tbody>
</table>

3.2 Connecting Power to the Transmitter

Connect 24 VAC power to the large, two position power input terminal labeled “POWER” on the upper right hand side of the main circuit board (Figure 3). Since the output signals are isolated from the power supply, it is not necessary to provide an isolated (secondary not grounded) power source.

⚠️ Multiple GTC116 transmitters wired to a single transformer must be wired “in-phase” (L1 to L1, L2 to L2).
3.3 Connecting Sensor Probes to the Transmitter

After installing the sensor probes and transmitter, connect each of the sensor probe cable plugs to the circular receptacles located at the bottom of the GTC116 transmitter enclosure. Probes are “Plug and Play” and do not have to be connected to a specific receptacle on the transmitter unless traverse data is desired (see note below). Transmitters accept only GP1 and GB1 sensors.

⚠️ Provide a “drip loop” at the transmitter if there will be the potential for water runoff or condensation along the sensor probe cable(s).

⚠️ Sensor probe cable plugs are “keyed” as shown below. Line up plug with receptacle and push straight on to receptacle.

⚠️ DO NOT TWIST. Squeeze cable plug “ribs” towards receptacle when removing. Forcing the cable plug in or out of the receptacle will damage the connectors and void warranty.

⚠️ When traverse data is desired (especially when using the EB-Link Reader), probes should be installed and connected to the transmitter using the mounting convention specified in the separate GP1/GB1 sensor probe Installation Guide. Proper installation simplifies sensor location decoding during data analysis.

![Type A TRANSMITTER](Type A TRANSMITTER.png)

Accepts 1 or 2 probes up to 8 sensors each

![Type B TRANSMITTER](Type B TRANSMITTER.png)

Accepts 1 to 4 probes up to 4 sensors each

Figure 4. Type A and Type B Transmitter Connector Panel Detail

![Figure 5. Connector Detail](Figure 5. Connector Detail.png)

Squeeze and then pull to remove
DO NOT TWIST!
4 GTC116 ANALOG OUTPUT AND NETWORK CONNECTIONS

This section contains analog and network output wiring instructions for the GTC116 transmitter with RS-485 and Dual Analog outputs.

4.1 GTC116 - ANALOG OUTPUT WIRING

Analog output connections are made at the top left of the transmitter main circuit board OUTPUT connector as shown in Figure 6. Independent linear analog outputs are provided for airflow at OUTPUT terminal 1, and for temperature (or alarm) at OUTPUT terminal 2, each with over voltage and over current protection. Airflow and temperature outputs are field selectable for either 0-5/0-10 VDC or 4-20 mA. The OUTPUT terminal 2 can be assigned as an Alarm output to provide an active high, active low or trouble alarm output. Outputs are galvanically isolated from the main power supply to permit simple integration with virtually all building automation systems.

When configured for 4-20mA output, the GTC116 is a "4-wire" device. The host controls shall not provide any excitation voltage to the output of the GTC116.

For the analog outputs, shielded cable is recommended. To wire the analog outputs, slide the cover plate up and off of the enclosure. Ensure that the power switch is in the “OFF” position. Connect signal wires for airflow rate and temperature (or alarm) to the small, three position output terminal labeled “OUTPUT” on the upper left hand side of the main circuit board as shown in Figure 6.
4.2 GTC116 - RS-485 NETWORK WIRING CONNECTIONS

4.2.1 GTC116 - RS-485 Network Cable Specifications
The RS-485 network cable shall be shielded twisted pair with a characteristic impedance of 100 to 130 ohms. Distributed capacitance between conductors shall be less than 100 pF per meter. Distributed capacitance between conductors and shield shall be less than 200 pF per meter. The maximum recommended length of a network segment is 1200 meters with AWG 18 cable.

4.2.2 GTC116 - Connecting to an RS-485 Network:
Connect the NET+, NET- and COM terminals with shielded twisted pair cable meeting the specifications defined in the previous paragraph (typically using two pairs; one pair for +/- and (at least one of) the wires in other pair for COM when using 2-pair cable). The connection to the network must be made in a “daisy chain” configuration. "T" connections and stubs are NOT permitted. The shield should be terminated at one end on the network only.

*CAUTION

For ISOLATED output, the COM connection MUST BE CONNECTED to the network common for proper operation. In addition, when the Analog Output is concurrently used with the RS-485 Output, the Common connection for both Analog and RS-485 Outputs must be at the same potential.

For NON-ISOLATED output, the COM connection MUST BE CONNECTED to the common ground that is used by the other network devices (typically the ground side of the 24VAC supply; terminal L2 at the POWER connector block in Figure 6). In addition, when the Analog Output is concurrently used with the RS-485 Output, the Common connection for both Analog and RS-485 Outputs must be at the same potential.

4.2.3 GTC116 - Setting Transmitter Termination for RS-485 Network
The GTC116 is shipped with the Termination switch set for No termination, which is the recommended setting for devices installed on the network bus anywhere EXCEPT at the ends of the bus/segment. EBTRON recommends the following termination strategy for devices connected at the ends of the network bus/segment:

When the transmitter is at one end of the network, it should be terminated with “End of Line” (or 120 ohm standard) termination, and the device at the other end should be terminated with “Fail Safe Bias” termination. This method provides proper network termination and ensures that the bus is in a known state during idle-line conditions (when no devices are driving the bus). EBTRON GTC116 transmitters include three termination options for “End of Line” (standard 120 ohm) and “Fail-safe Bias” (recommended at one end of the bus) or for “No Termination”. Termination is selected by setting TERMINATION DIP switch SW3 as shown below.

Check the network/network segment to ensure that only one device is terminated with either method. If multiple devices are terminated as described above, network segment operation will be adversely affected.

4.3 GTC116 - Transmitter Setup for RS-485 Network Operation
For RS-485 operation, network connections are made on the GTC116 Combination board as shown in Figure 6, and set up is as follows. Network protocol, MS/TP address, device instance number and baud rate options are all selected with in the NETWORK section of SETUP menu shown in Appendix A.

NOTE:
Prior to power up, network configuration and termination switches must be set as shown in Figure 6. Wiring to the RS-485 network is accomplished after setting the GTC116 network configuration switches.

4.3.1 GTC116 - RS-485 Network Options and Communications Menu Settings
The transmitter is shipped from the factory with the protocol set for BACnet MS/TP Master, address 2, MS/TP Device ID 2, Baud rate of 76,800 and no termination. Initial RS-485 communications settings are accomplished within the GTC116 NETWORK sub menu shown in Appendix A. Termination is set up by the TERM DIP switch SW3 located on the Combination card shown in Figure 6.
a measurable difference!

4.3.2 GTC116 - Setting RS-485 Network Protocol
Transmitter protocol can be set for MS/TP or MODBUS as shown in the NETWORK submenu (Appendix A).
Tables 2 and 3 list the specific features of each protocol.

4.3.3 GTC116 - Setting Transmitter Address
The GTC116 is factory set to an address of 2. Each transmitter must be assigned a unique address between 0 and 127 for BACnet or 1 and 247 for Modbus prior to connecting it to the network. Set the address in the NETWORK submenu (Appendix A).

4.3.4 GTC116 - Setting Baud Rate
The GTC116 transmitter default baud rate for MS/TP is 76,800 and for MODBUS is 19,200. Baud rate can be configured in the NETWORK sub menu (Appendix A).

4.3.5 GTC116 - Setting Modbus Parity
When using Modbus communications protocol, Parity can be changed in the NETWORK submenu. Parity can be set for Even (default), Odd, None 1 (with 1 stop bit), or None 2 (with 2 stop bits).

4.3.6 GTC116 - Setting BACnet Device Instance Number
When using BACnet communications protocol, the factory default Device Instance Number is 2. Device Instance Number can be set as shown in the NETWORK submenu. Device Instance Number can also be changed to any number between 0 and 4,194,302 by writing to the Device Object’s Object Identifier Property over the network.

4.3.7 GTC116 - Resetting Communications Options to Factory Default Values
Communications options can be reset to factory default values (asterisk) * values using the GTC116 RESET NET menu option.
Table 2. GTC116 BACnet Objects List

<table>
<thead>
<tr>
<th>Type, ID</th>
<th>Name</th>
<th>Default</th>
<th>Units</th>
<th>Description</th>
<th>Range/Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device</td>
<td>GTC116</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AI, 1</td>
<td>Average Flow</td>
<td></td>
<td>CPM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AI, 2</td>
<td>Average Temperature</td>
<td></td>
<td>°F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AI, 3</td>
<td>Alarm Status</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Analog Values

<table>
<thead>
<tr>
<th>Function</th>
<th>Address</th>
<th>Type</th>
<th>Units</th>
<th>Description</th>
<th>Range/Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>AV, 1</td>
<td>Area</td>
<td>sq.ft.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AV, 2</td>
<td>Traverse Data Status</td>
<td>boolean</td>
<td></td>
<td></td>
<td>0=None, 1=Flow, 2=Temp, 3=Both</td>
</tr>
<tr>
<td>AV, 3</td>
<td>Flow Traverse</td>
<td>FPM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AV, 18</td>
<td>Flow Traverse</td>
<td>FPM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AV, 19</td>
<td>Temperature Traverse</td>
<td>°F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AV, 34</td>
<td>Temperature Traverse</td>
<td>°F</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Flow and Temp traverse must be enabled through AV2.
2. User Executed Services Supported:
 - Subscribe COV, Read Property, Write Property,
 - Device Communication Control, Who-Is.

Table 3. GTC116 Modbus Register Map

<table>
<thead>
<tr>
<th>Function</th>
<th>Address</th>
<th>Type</th>
<th>Units</th>
<th>Description</th>
<th>Range/Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>10001</td>
<td>boolean</td>
<td></td>
<td>Trouble Status</td>
<td>0:OK, 1:Trbl</td>
</tr>
<tr>
<td>4</td>
<td>30001-30002</td>
<td>float</td>
<td>FPM</td>
<td>Average Airflow</td>
<td>0 to 15,000</td>
</tr>
<tr>
<td>4</td>
<td>30003-30004</td>
<td>float</td>
<td>°F</td>
<td>Average Temperature</td>
<td>-20 to 160</td>
</tr>
<tr>
<td>4</td>
<td>30005</td>
<td>word</td>
<td></td>
<td>Number of Inserts</td>
<td>0 to 16</td>
</tr>
<tr>
<td>4</td>
<td>30006</td>
<td>word</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>30007</td>
<td>word</td>
<td></td>
<td>Alarm Status</td>
<td>0: No alarm, 1: High Alarm, 2: Low Alarm, 3: Both</td>
</tr>
<tr>
<td>4</td>
<td>30008</td>
<td>word</td>
<td></td>
<td>Connector C1 Sensors</td>
<td>0 to 8</td>
</tr>
<tr>
<td>4</td>
<td>30009</td>
<td>word</td>
<td></td>
<td>Connector C2 Sensors</td>
<td>0 to 8</td>
</tr>
<tr>
<td>4</td>
<td>30010</td>
<td>word</td>
<td></td>
<td>Connector C3 Sensors</td>
<td>0 to 8</td>
</tr>
<tr>
<td>4</td>
<td>30011</td>
<td>word</td>
<td></td>
<td>Connector C4 Sensors</td>
<td>0 to 8</td>
</tr>
<tr>
<td>4</td>
<td>30012-30043</td>
<td>float</td>
<td>FPM</td>
<td>Airflow Traverse</td>
<td>0 to 15,000</td>
</tr>
<tr>
<td>4</td>
<td>30012-30013</td>
<td></td>
<td></td>
<td>Insert 1 Flow</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>30042-30043</td>
<td></td>
<td></td>
<td>Insert 16 Flow</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>30044-30076</td>
<td>float</td>
<td>°F</td>
<td>Temperature Traverse</td>
<td>-20 to 160</td>
</tr>
<tr>
<td>4</td>
<td>30044-30045</td>
<td></td>
<td></td>
<td>Insert 1 Temp</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>30074-30075</td>
<td></td>
<td></td>
<td>Insert 16 Temp</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>30076-30077</td>
<td>float</td>
<td></td>
<td>Sq.Ft. Area</td>
<td>0 to 100</td>
</tr>
<tr>
<td>4</td>
<td>300202</td>
<td>word</td>
<td></td>
<td>Float word order</td>
<td>0: high word first; 1: low word first</td>
</tr>
</tbody>
</table>
5 GTC116 TRANSMITTER START-UP, INITIALIZATION AND SETUP MENUS

To ensure a successful start-up, verify that the airflow measuring station sensor probes and transmitter are installed in accordance with EBTRON guidelines.

⚠ Check the physical installation, power connections and model specific signal wiring prior to turning the power switch to the “ON” position.

Move the power switch to the “ON” position. The transmitter executes a complete self-check each time the power is turned on that takes 10 seconds to complete.

5.1 Changing the System of Units - IP or SI Units

The GTC116 transmitter is provided with the system of units set to IP. To change to SI units, simultaneously press and release the “ENT” and “ESC” buttons during normal operation. “IP/SI UNITS” will be indicated on the LCD display. Refer to Appendix A SYSTEM OF UNITS MENU for details on the System of Units menu. Note that Setup Menu items are shown in IP System Of Units. When SI System of Units is selected, the units of measure abbreviations used in the menus is shown in Table 4.

<table>
<thead>
<tr>
<th>“IP” System of Units</th>
<th>Description</th>
<th>“SI” System of Units</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FPM</td>
<td>Feet per minute</td>
<td>MPS</td>
<td>Meters per second</td>
</tr>
<tr>
<td>CFM</td>
<td>Cubic feet per minute</td>
<td>LPS</td>
<td>Liters per second</td>
</tr>
<tr>
<td>SQF</td>
<td>Square feet</td>
<td>SQM</td>
<td>Square meters</td>
</tr>
<tr>
<td>F</td>
<td>Fahrenheit</td>
<td>C</td>
<td>Celsius</td>
</tr>
</tbody>
</table>

5.2 GTC116 Transmitter Calibration

The GTC116 uses high quality industrial grade components and is designed for years of trouble-free operation. Periodic recalibration of the transmitter is neither required or recommended. Transmitter field calibration verifiers are available for purchase from EBTRON for installations requiring periodic validation of instrumentation. Contact EBTRON for more information.

5.3 GTC116 LCD Display Notifications

Following a brief initialization at power up, the LCD display automatically displays airflow and temperature with units of measurement in all upper case (caps) characters. The display provides additional information on system status and alarm conditions. Refer to the ALARM FEATURES section of this manual for additional detail on Alarm and Trouble Error code indications.
5.4 Factory Default Menu Settings for GP1 Sensor Probes

The GTC116 transmitter is “plug and play” and does not require setup unless a network option is selected that requires configuration. Table 5 shows the factory default settings for all compatible sensor probes.

To change the Factory Default Settings, see: CHANGING FACTORY DEFAULT SETUP MENU SETTINGS.

<table>
<thead>
<tr>
<th>Display</th>
<th>Description</th>
<th>I-P</th>
<th>S.I.</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIRFLOW=</td>
<td>Airflow measurement method, Actual or Standard.</td>
<td>ACT</td>
<td>ACT</td>
</tr>
<tr>
<td>*AREA=</td>
<td>Free area where station is located (required for volumetric measurement)</td>
<td>0.00 sq.ft. (see note)</td>
<td>0.000 sq.meters (see note)</td>
</tr>
<tr>
<td>*AO1 SGNL=</td>
<td>Output 1 signal type voltage or mA (airflow)</td>
<td>mA</td>
<td>mA</td>
</tr>
<tr>
<td>*AO1 UM=</td>
<td>Output 1 units of measure</td>
<td>AFPM</td>
<td>MPS</td>
</tr>
<tr>
<td>*AO1 FS=</td>
<td>Output 1 signal full scale</td>
<td>5,000 FPM</td>
<td>25 MPS</td>
</tr>
<tr>
<td>*AO2 SGNL=</td>
<td>Output 2 signal voltage or mA (temperature or alarm)</td>
<td>mA (see alarms)</td>
<td>mA (see alarms)</td>
</tr>
<tr>
<td>*AO2 MS=</td>
<td>Output 2 signal minimum scale</td>
<td>-20º F</td>
<td>-30º C</td>
</tr>
<tr>
<td>*AO2 FS=</td>
<td>Output 2 signal full scale</td>
<td>160º F</td>
<td>70º C</td>
</tr>
<tr>
<td>*LCD INTG=</td>
<td>Number of flow calculations to be averaged for LCD display.</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>*AO1 INTG=</td>
<td>Number of flow calculations to be averaged for AO1 output.</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>*ALT=</td>
<td>Altitude for flow correction relative to mean sea level (0 ft).</td>
<td>0 ft</td>
<td>0 m</td>
</tr>
<tr>
<td>*AO2 ASGN=</td>
<td>Output 2 Assigned Type is Temperature</td>
<td>TEMP</td>
<td>TEMP</td>
</tr>
<tr>
<td>*TOL=</td>
<td>Alarm range tolerance value. For AO2 ASGN=ALARM, this setting establishes the alarm range relative to the SETPNT= value.</td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td>*NO FAULT=</td>
<td>Sets the AO2 normal (not alarm) output state relative to the full scale analog output selected. HI provides maximum full scale under normal conditions and maximum scale during alarm. LO provides minimum full scale under normal conditions and maximum scale during alarm.</td>
<td>HI</td>
<td>HI</td>
</tr>
<tr>
<td>*DELAY=</td>
<td>Time that the alarm condition must exist before alarm output is activated.</td>
<td>2 minutes</td>
<td>2 minutes</td>
</tr>
<tr>
<td>*ZERO OFF=</td>
<td>Set to YES to inhibit LO alarm condition when flow reading is below LLIMIT= setting. Set to NO to disable this feature.</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>*RESET=</td>
<td>Set to AUTO to have alarm self-clear when alarm condition no longer exists. Set to MANUAL to require manual reset of alarm.</td>
<td>AUTO</td>
<td>AUTO</td>
</tr>
</tbody>
</table>

Note: For GP1 probes, area is stored in one-wire, but can be changed.
5.5 GTC116 Changing Factory Default Setup Menu Settings

5.5.1 Setup Menu Options
The GTC116 Transmitter is setup and tested at the factory to be fully operational when sensor probes are connected and power is applied (set the power switch to the “ON” position). Factory settings can easily be changed using the SETUP MENU by simultaneously pressing and releasing the “UP” and “DOWN” buttons while the transmitter is in its normal operating mode. Appendix A details the SETUP menus. Navigate through the SETUP menus to make changes to the transmitter configuration. The settings take effect immediately. The following are common field modifications to the factory default settings.

5.5.2 Adjusting the Low Limit Cutoff Feature
The low limit cutoff feature (menu item LLIMIT=) forces the output signal for the airflow rate to zero whenever the calculated airflow rate falls below the specified Low Limit value.

5.5.3 Selecting Actual and Standard Output Measurement Type
The transmitter is set from the factory to provide actual airflow measurement units (displayed as “ACFM” and “AFPM”). In this mode, airflow measurements are calculated for actual inlet conditions. If using actual airflow, corrections for altitude are entered through the ALT= setting in the Setup menu. If desired, the output can be set to provide standard airflow measurement units (displayed as “SCFM” and “SFPM) which provides measurements that are corrected to standard conditions.

5.5.4 Output Scaling
EBTRON’s Gold Series sensors are individually calibrated between 0 and the factory default full scale in wind tunnels traceable to the National Institute of Standards and Technology (NIST). Sensors are independent and produce “percent of reading” accuracy. Changing the full scale value does not change the accuracy of the device. Factory default analog output scaling can be changed within the SETUP menus.

5.5.5 Changing the LCD Display from Volumetric Flow CFM to Velocity FPM
The GTC116 transmitter is shipped from the factory to indicate volumetric flow. To display velocity in FPM, enter the SETUP menu and in the DISPLAY submenu, change the “*LCD UM=ACFM” to “*LCD UM=AFPM”. Changing the LCD display units will not affect the analog output signal.

5.5.6 Converting the Analog Output Signal from FPM to CFM
The GTC116 transmitter is shipped from the factory with analog output “OUTPUT 1’’ set to indicate velocity in AFPM. To automatically convert this analog velocity output to volumetric flow (ACFM), simply set the *AO1 UM from AFPM (default) to ACFM in the Setup menu. If you wish to manually convert the velocity output to volumetric flow (ACFM), simply multiply the indicated output velocity (in FPM) by the free area of the air flow probe installation location. Refer also to Table 7 for a complete listing of conversions for each of the analog outputs of the GTC116. The AO1 full scale analog output (OUTPUT1) value is determined by the AO1 FS setting within the SETUP menu.

5.5.7 Locking the Configuration Settings
The GTC116 transmitter configuration settings can be locked at one of three security levels within the SECURITY submenu using the LOCK SEC= item.

When LOW security level is selected (LOCK SEC=LOW) the last 4 digits of the board serial number are automatically assigned as the lock code. To see board serial number, navigate to DIAGNOSTICS menu in SERIAL NUMBERS item.

When the MED security level is selected (LOCK SEC=MED) the user enters and confirms a security code. In the event that this code is lost/misplaced, EBTRON can provide a key that is unique to the transmitter to unlock it. Contact EBTRON customer service for this code.

When the HIGH security level is selected (LOCK SEC=HIGH) the user enters and confirms a security code. In the event that this code is lost/misplaced, the transmitter must be returned to the factory in order to unlock it.

When LOCK SEC=HIGH is selected, the user defined setting can only be changed after entering the user defined code. STORE THE LOCK CODE IN A SAFE LOCATION! For security reasons, the HIGH level lock code can only be reset by returning the transmitter to the factory.
a measurable difference!

5.6 GTC116 - Alarm Features

Analog output AO2 (OUT2) can be assigned to function as an alarm output. The AO2 alarm output can be assigned in the SETUP menu to operate as an average alarm (AO2 ASGN=ALRM) or as a trouble alarm (AO2 ASGN=TRBL) for monitoring the status of the transmitter and sensors. The AO2 ASGN= setting is located in the ANALOG OUT submenu of the SETUP menu. The transmitter LCD display will indicate the Alarm status for 2 seconds, and will cycle through any other alarms if multiple alarm events are active for 2 seconds each, and then display the current actual flow for 2 seconds. Detailed set up of the Alarm features is shown in the Setup menu.

5.6.1 Average Alarm (AO2 ASGN=ALRM)
AO2 output is assigned as an average airflow alarm output. Useful for applications where a low flow alarm or a high flow alarm for operation outside of a defined range (setpoint and tolerance) is required.

5.6.2 Trouble Alarm (AO2 ASGN=TRBL)
AO2 output is assigned as a transmitter trouble alarm indicating a fault within the transmitter or a sensor of the airflow measurement system. The transmitter LCD will indicate a trouble code and a brief description of the trouble. Contact EBTRON customer service for additional information or assistance with trouble codes.

5.6.3 No Fault (NO FAULT=HI)
When AO2 output is assigned as an alarm, this setting configures the normal output condition to be HI or LO relative to the full scale analog output level selected when no fault condition exists.

5.6.4 Alarm Indications
Table 6 details the alarm types, LCD indications and AO2 alarm output indication. User can select either or both of the two Average Alarms or the Trouble Alarm.

5.6.5 Low Alarm - “LO ALRM= ON”
The Low Alarm is activated when the average airflow falls to a defined level below the SETPNT= value. The defined level is equal to the SETPNT= value minus the calculated value of (TOL= value * SETPNT= value). Once active, the alarm can be cleared when the average airflow rises above the set point minus calculated tolerance value.

5.6.6 High Alarm - “HI ALRM= ON”
The High Alarm is activated when the average airflow rises above a defined level above the SETPNT= value. The defined level is equal to the SETPNT= value plus the calculated value of (TOL= value * SETPNT= value). Once active, the alarm can be cleared when the average airflow falls below the set point + calculated tolerance value.

5.6.7 Trouble Alarm - “AO2 ASGN=TRBL”
The Trouble alarm provides trouble codes useful for isolating setup issues or problems within the transmitter or sensors. The transmitter LCD will indicate TROUBLE! regardless of whether AO2 is assigned to TRBLE. The Diagnostic submenu can be engaged for the error code and a brief description of the trouble. Contact EBTRON customer service for information on troubleshooting using the Trouble error codes.

<table>
<thead>
<tr>
<th>ALARM OUTPUT ASSIGNMENT TYPE</th>
<th>LOCAL LCD DISPLAY OF ALARM TYPE AND NOTIFICATION</th>
<th>ANALOG OUTPUT 2 ALARM INDICATION</th>
<th>NETWORK ALARM INDICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOW ALARM (Average Alarm)</td>
<td>Display alternates between LOW ALARM (then any other alarms) and actual reading for 2 seconds each.</td>
<td>On alarm or trouble, OUT2 is active high (or active low) relative to the full scale maximum (or minimum) analog value as determined by the SETUP Menu “NO FAULT=“ selection. Individual sensor velocities can be viewed using the Diagnostics submenu.</td>
<td>Alarm Status is available at BACnet Objects and Modbus Registers. Refer to BACnet Objects List and Modbus Register Map for additional detail.</td>
</tr>
<tr>
<td>HIGH ALARM (Average Alarm)</td>
<td>Display alternates between HIGH ALARM (then any other alarms) and actual reading for 2 seconds each.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TROUBLE ! (Trouble Alarm)</td>
<td>Display indicates TROUBLE ! (Refer to DIAGNOSTIC menu to obtain a brief description of the error and any other alarms).</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5.7 GTC116 - Analog Output Type Selection and Setup

The analog output signal type at AO1 (OUT1, airflow) and AO2 (OUT2, temperature/alarm) can be set for mA or VDC output by setting switches SW1/SW2 (Figures 6 and 7) and by selecting the 4-20mA, 0-5 VDC or 0-10VDC ranges in the ANALOG OUT sub menu options *AO1 RNGE= / *AO2 RNGE= settings. The transmitter is shipped from the factory with SW1/SW2 and Setup menu options *AO1 RNGE= and *AO2 RNGE= set for 4-20mA.

5.7.1 GTC116 - Converting Analog Output Signal Values to Airflow and Temperature

Table 7 lists specific conversion equations for analog voltage or current output options.

Table 7. GTC116 Converting Analog Output Values to Airflow/Temperature

When OUTPUT 1 is Configured as Linear Airflow (FPM, MPS):

<table>
<thead>
<tr>
<th>TO CONVERT TO</th>
<th>0-10 VDC</th>
<th>0-5 VDC</th>
<th>4-20 mA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airflow (FPM, MPS)</td>
<td>Output Voltage/10 x FS1</td>
<td>Output Voltage/5 x FS1</td>
<td>(Output Current-4)/16 x FS1</td>
</tr>
<tr>
<td>Airflow (CFM)</td>
<td>Area (SQF) x Output/10 x FS1</td>
<td>Area (SQF) x Output/5 x FS1</td>
<td>Area (SQF) x (Output - 4)/16 x FS1</td>
</tr>
<tr>
<td>Airflow (LPS)</td>
<td>Area (SQM) x Output/10 x FS1 x 1000</td>
<td>Area (SQM) x Output/5 x FS1 x 1000</td>
<td>Area (SQM) x (Output - 4)/16 x FS1 x 1000</td>
</tr>
</tbody>
</table>

When OUTPUT 1 is Configured as Volumetric Airflow (CFM, LPS):

<table>
<thead>
<tr>
<th>TO CONVERT TO</th>
<th>0-10 VDC</th>
<th>0-5 VDC</th>
<th>4-20 mA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airflow (CFM, LPS)</td>
<td>Output Voltage/10 x FS1</td>
<td>Output Voltage/5 x FS1</td>
<td>(Output Current - 4)/16 x FS1</td>
</tr>
</tbody>
</table>

When OUTPUT 2 is Configured as Temperature (°F, °C):

<table>
<thead>
<tr>
<th>TO CONVERT TO</th>
<th>0-10 VDC</th>
<th>0-5 VDC</th>
<th>4-20 mA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp (°F, °C)</td>
<td>Output Voltage/10 x (FS2-MS2) + MS2</td>
<td>Output Voltage/5 x (FS2-MS2) + MS2</td>
<td>(Output Current - 4)/16 x (FS2-MS2) + MS2</td>
</tr>
</tbody>
</table>

NOTES:
FS1 is AO1 full scale analog output value from ANALOG OUT MENU.
FS2 is AO2 full scale analog output value from ANALOG OUT MENU.
MS2 is AO2 minimum scale analog output value from ANALOG OUT MENU.

5.7.2 GTC116 - AO1/AO2 OUTPUT TEST - Sending a Test Output Signal to the Host Control System

A test output signal between 0 and 100% of the full scale output (4-20 mA or 0-5VDC/0-10VDC) can be provided by the GTC116 transmitter to verify proper conversion of the output signals from the transmitter at the host control system. To set a fixed output signal for airflow and temperature, navigate to the OUTPUT TEST submenu in the TOOLS menu. OUT1 and OUT2 tests are independently accessed, and the output will maintain the % selected until the “ESC” button is pressed and normal operation resumes.
GOLD SERIES GTC116 TRANSMITTER

5.8 Viewing Sensor Data

5.8.1 Viewing Sensor Data on the Local LCD Display
Airflow and temperature of individual sensors can be displayed on the local LCD display by entering the Diagnostic Menu. Simultaneously depress the up ↑ and down ↓ arrows to enter the GTC116 SETUP menu, and then navigate to the Diagnostic submenu.

5.8.2 Viewing Sensor Data via BACnet, Modbus networks or via EB-Link Reader
Airflow and temperature of individual sensors can be read across BACnet or Modbus networks, or downloaded directly to an EB-Link Reader if the intra-red EB-Link option has been installed. Refer to the following Sensor Addressing and Probe Positioning paragraph for the suggested probe installation configuration. Tables 2 and 3 provide BACnet objects and register addressing information for individual sensor data.

5.8.3 Sensor Addressing and Probe Positioning
Sensors are automatically addressed after power is applied to the transmitter as follows:
The probe connected to the left most connector, C1, is defined as probe 1. The sensor opposite the cable end of the probe is defined as sensor 1 when viewing individual sensor data. Refer to Figure 7 below for additional detail.

![Figure 7. Sensor Addressing and Probe Positioning Detail](image)

Note that if only average data is desired, the mounting position of the probes is not critical. When a probe is disconnected and then plugged in to a different port, the transmitter will re-discover it within 15 seconds and make any necessary addressing adjustments.

To standardize installation and decoding of data, particularly when using the EB-Link Reader product, EBTRON recommends a left to right (or top to bottom in vertical applications) sensor probe mounting convention as detailed in the separate sensor probe installation instructions.

6 SETUP MENUS
Appendix A details the various setup menus and submenus.

7 WIRING DIAGRAM
Appendix B is the wiring diagram for the GTC116 transmitter.
APPENDIX A - ADVANTAGE 3 - SETUP MENUS

SYSTEM OF UNITS MENU
Simultaneously depress/release ENTER + ESC keys during normal operation to select

<table>
<thead>
<tr>
<th>Factory Default/Current Setting</th>
<th>Enter (move —)</th>
<th>Enter (move —)</th>
<th>Enter (move —)</th>
<th>Enter (move —)</th>
<th>ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Exit (normal oper.)</td>
<td>Exit (move —)</td>
<td>Exit (move —)</td>
<td>Exit (move —)</td>
<td></td>
</tr>
<tr>
<td>IPS/IPS SYS</td>
<td>SET IPS?</td>
<td>IPS/IPS SYS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPS/SG SYS</td>
<td>SET IPS?</td>
<td>IPS/SG SYS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SYSTEM OF UNITS MENU

Set system of units to I-P (FPM, CFM, sq.ft., ºF) or Set system of units to S-I (MPS, LPS, sq.M., ºC).

NOTE:
Changing IPS/IPS SYS resets alarm settings and scaling values.

SETUP MENU
Simultaneously depress/release ↑ + ↓ keys during normal operation to select

<table>
<thead>
<tr>
<th>Factory Default/Current Setting</th>
<th>Enter (move —)</th>
<th>Enter (move —)</th>
<th>Enter (move —)</th>
<th>Enter (move —)</th>
<th>ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Exit (normal oper.)</td>
<td>Exit (move —)</td>
<td>Exit (move —)</td>
<td>Exit (move —)</td>
<td></td>
</tr>
<tr>
<td>NAME={unit serial#}</td>
<td>SET NAME?</td>
<td>NAME=</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NAME=</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEMP METH=AVG</td>
<td>SET TEMP METH?</td>
<td>TEMPMETH=AVG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TEMPMETH=AVG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ON FAIL=LO</td>
<td>SET ON FAIL?</td>
<td>ONFAIL=LO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ONFAIL=LO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXT CABLE=0</td>
<td>SET EXT CABLE?</td>
<td>EXT CABLE=0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EXT CABLE=0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCD UM=ACFM</td>
<td>SET LCD UM?</td>
<td>LCD UM=ACFM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LCD UM=ACFM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCD UM=AFPM</td>
<td>SET LCD UM?</td>
<td>LCD UM=AFPM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LCD UM=AFPM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCD DSPL=OFF</td>
<td>SET LCD DSPL?</td>
<td>LCD DSPL=OFF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LCD DSPL=OFF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCD DSPL=FLOW</td>
<td>SET LCD DSPL?</td>
<td>LCD DSPL=FLOW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LCD DSPL=FLOW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCD DSPL=TEMP</td>
<td>SET LCD DSPL?</td>
<td>LCD DSPL=TEMP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LCD DSPL=TEMP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCD DSPL=BOTh</td>
<td>SET LCD DSPL?</td>
<td>LCD DSPL=BOTh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LCD DSPL=BOTh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCD INTG=0</td>
<td>SET LCD INTG?</td>
<td>LCD INTG=0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LCD INTG=0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCD TRBL=ON</td>
<td>SET LCD TRBL?</td>
<td>LCD TRBL=ON</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LCD TRBL=ON</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SETUP MENU

Custom LCD Flow Text: Blinking prompt at position of the selected character. Character is selected using the up and down arrows and then ENTER to accept and move cursor forward (right); ESC moves the cursor back (left). Use space characters for blank or unset text.

Instruction text:
"USE + AND EXIT then NAME=..."

Set the airflow measurement to ACTUAL units (AFPM/ACFM)

Set the airflow measurement to Standard units (SFPM/SCFM)

Set the altitude above sea level for flow correction: 0 to 18,000 ft.

This is always a velocity value.

Note: Value is from one-wire but can be overridden.

AUTO forces a re-read of the one-wire value. (AUTO not available if area value has not been written into one-wire chip).

Set the temperature output for velocity weighted average of temperature sensors.

Set the temperature output for mathematical average of temperature sensors.

Sets transmitter analog output state in the event of a major fault (all sensor failure) expressed as HI for full scale analog output or LO as minimum scale analog output.

Enter length of extension cable.

Set LCD airflow display units to CFM or FPM. (Note: A-ACT or S-STD measurement prefix is set by AIRFLOW= setting above).

Set LCD airflow display units to CFM or FPM. (Note: A-ACT or S-STD measurement prefix is set by AIRFLOW= setting above).

Enter length of extension cable.

Set LCD airflow display units to CFM or FPM. (Note: A-ACT or S-STD measurement prefix is set by AIRFLOW= setting above).

Set LCD airflow display units to CFM or FPM. (Note: A-ACT or S-STD measurement prefix is set by AIRFLOW= setting above).

Set what is displayed on LCD.

Sets transmitter analog output state in the event of a major fault (all sensor failure) expressed as HI for full scale analog output or LO as minimum scale analog output.

Enter length of extension cable.

Set LCD airflow display units to CFM or FPM. (Note: A-ACT or S-STD measurement prefix is set by AIRFLOW= setting above).

Integration samples for LCD.

Set whether or not TROUBLE will display on LCD during a trouble condition.
Gold Series GTC116 Transmitter

FROM PART 1

Analog Outputs only

- AO1 ASSIGN=FLOW
 - AO1 RNGE=0-10
 - AO1 RNGE=0-5
 - AO1 UM=AFPM

 - AO1 SGNL=mA
 - AO1 RNGE=4-20
 - AO1 RNGE=0-10
 - AO1 RNGE=0-5
 - AO1 UM=AFPM

 - AO1 SGNL=VDC
 - AO1 RNGE=0-5
 - AO1 UM=ACFM

- AO2 ASSIGN=TEMP
 - AO2 RNGE=4-20
 - AO2 RNGE=0-10
 - AO2 RNGE=0-5

- AO2 SGNL=mA
 - AO2 RNGE=4-20
 - AO2 RNGE=0-10
 - AO2 RNGE=0-5

- AO2 SGNL=VDC
 - AO2 RNGE=0-5

TO PART 3

- AO1 ASSIGN=FIXED
 - AO1 SGNL=mA

- AO2 ASSIGN=ALRM or TRBL
 - AO2 RNGE=FIXED

Set AO1 output units to FPM or CFM. (Note: A-ACT or S-STD measurement is set by AIRFLOW setting above).

- AO2 RNGE=0-10
 - AO2 RNGE=0-5

Set AO2 minimum scale.

- AO2 RNGE=FIXED
 - AO2 RNGE=0-10

Set AO2 full scale.

Sets AO2 alarm/trouble output state when no fault condition is present, expressed as HI (full scale analog output) or LO (minimum scale analog output).

The text “AO1 ASSIN FIXED” flashes to indicate that this setting is fixed and cannot be modified.

Display initially shows the current SW1 PCB switch setting (VDC or mA) for AO1. Pressing enter displays “SET SW1 ON PCB” prompt to confirm SW1 PCB setting.

The text “AO1 RNGE FIXED” flashes to indicate that this setting is fixed and cannot be modified.

Set AO2 output units to FPM or CFM. (Note: A-ACT or S-STD measurement is set by AIRFLOW setting above).

Set full scale for AO1. FS default value is dependent on probe type connected.

Integration samples. Also same as network integration.

AO2 output is assigned as a transmitter trouble alarm indicating that a sensor or transmitter fault has occurred.

Display initially shows the current SW2 PCB switch setting (VDC or mA) for AO2. Pressing enter displays “SET SW2 ON PCB” prompt to confirm SW2 PCB setting.

The text “AO2 RNGE FIXED” flashes to indicate that this setting is fixed and cannot be modified.

Set analog output range (VDC) for AO1.

Set AO2 alarm/trouble output state when no fault condition is present, expressed as HI (full scale analog output) or LO (minimum scale analog output).
FROM PART 2

GTC Configuration

- **NETOUT+MODBUS**
- **NETOUT+IP**
- **SET NETOUT?**

- **NETADDRESS**
- **SET NETADDRESS?**

- **NETBAUD**
- **SET NETBAUD?**

- **PARITY**
- **SET PARITY?**

Option for MODBUS only

- **PARITY=EVEN**
- **SET PARITY?**

- **PARITY=ODD**
- **SET PARITY?**

- **PARITY=None**
- **SET PARITY?**

Option for BACNET only

- **NETDI**
- **SET NETDI?**

Set network protocol type.

Enter network address.

Set network baud rate.

Set MODBUS parity type.

Set network device instance number.

GTM Configuration

- **SET DHCP?**

- **SET IP?**

- **SET MASK?**

- **SET GATEWAY?**

- **SET BACNET?**

- **SET NETDI?**

Option for BACNET only

- **BACNET=IP**

- **BACNET=ETP**

Set DHCP to ON or OFF.

Enter IP address, use (up/down arrow) buttons to select value and press ENT to move to right and ESC to move to left.

Enter subnet mask, use (up/down arrow) buttons to select value and press ENT to move to right and ESC to move to left.

Enter gateway IP address, use (up/down arrow) buttons to select value and press ENT to move to right and ESC to move to left.

Set BACnet IP or Ethernet protocol.

Set network device instance number.

Set network device instance number.

EB-Link integration samples.
GOLD SERIES GTC116 TRANSMITTER

FROM PART 3

- **ALARM**
 - **LO ALRM=OFF**
 - **HI ALRM=OFF**

TO PART 5 'B'

- **Set LO ALRM?**
 - **LO ALRM=ON
 - **HI ALRM=ON**

- **Set HI ALRM?**
 - **HI ALRM=OFF
 - **HI ALRM=ON**

- **Set ALRM UN?**
 - **ALRM UN=AFPM
 - **ALRM UN=ACFM**

- **SET PNT=0**
 - **TOL=10%**
 - **DELAY=2 min**

- **ZERO OFF=NO**
 - **RESET=AUTO**

Enable/disable LO alarm.

Enable/disable HI alarm.

Set alarm units of measure to FPM or CFM (Note: A if ACT or S if STD measurement prefix set by AIRFLOW setting above).

Enter setpoint for alarm.

Enter tolerance as value above or below alarm setpoint. Units based on ALARM UN.

Set alarm DELAY.

When ZERO OFF=YES, this setting is used to inhibit the LO ALRM condition when the unit is reading 0. This is dependent on the low limit setting.

Set alarm RESET. AUTO will clear once the alarm is not active. MANUAL requires user to clear alarm by depressing the ESC key, or for RS485 (GTC116) output, write 0 to corresponding alarm BACnet object or Modbus register. Alarm will only clear when alarm is not active.
TO PART 6

GOLD SERIES GTC116 TRANSMITTER

FROM PART 1

ADJUSTMENTS

- **FLOW ADJ=OFF**
 - SET FLOW ADJ?

- **GAIN+1,000**
 - SET GAIN?

- **OFF+0**
 - SET OFF?

- **OUT1 TEST+0**
 - SET OUT1 TEST?

- **OUT2 TEST+0**
 - SET OUT2 TEST?

TOOLS

- **GTC, GTM models only**
 - OUTPUT TEST?

FIELD ADJUST

- **RUN FA WIZARD?**
 - SET FAW INT?

- **SET # OF FLOWS?**
 - # OF FLOWS=1

- **# OF FLOWS=2**

Dashed lines indicate Menus when # OF FLOWS=2

- **SET FLOW1?**
 - ENSURE THAT FAN IS ON AND SET TO DESIRED SPEED!
 - SET FLOW1?

- **FLOW1=0**
 - SET FLOW1?

- **FLOWADJ=ON**
 - SET FLOW ADJ?

- **FLOWADJ=OFF**
 - SET FLOW ADJ?

- **WAIT...%**
 - ADJUSTMENT COMPLETE

- **SET LOCK?**
 - LOCK SET?

- **ENTR CODE:**
 - CONF CODE:

RESET

- **RESET ALL?**
 - ARE YOU SURE?
 - RESET ALL=YES
 - RESET ALL=NO

- **RESET SENS?**
 - ARE YOU SURE?
 - RESET SENS=YES
 - RESET SENS=NO

- **RESET ADJ?**
 - ARE YOU SURE?
 - RESET ADJ=YES
 - RESET ADJ=NO

- **GTC, GTM models only**
 - RESET NET?
 - ARE YOU SURE?
 - RESET NET=YES
 - RESET NET=NO

- **RESET TRBL?**
 - ARE YOU SURE?
 - RESET TRBL=YES
 - RESET TRBL=NO

FROM PART 4

ADJUSTMENTS

- **FLOW ADJ=OFF**
 - SET FLOW ADJ?

- **GAIN+1,000**
 - SET GAIN?

- **OFF+0**
 - SET OFF?

- **OUT1 TEST+0**
 - SET OUT1 TEST?

- **OUT2 TEST+0**
 - SET OUT2 TEST?

TOOLS

- **GTC, GTM models only**
 - OUTPUT TEST?

FIELD ADJUST

- **RUN FA WIZARD?**
 - SET FAW INT?

- **SET # OF FLOWS?**
 - # OF FLOWS=1

- **# OF FLOWS=2**

Dashed lines indicate Menus when # OF FLOWS=2

- **SET FLOW1?**
 - ENSURE THAT FAN IS ON AND SET TO DESIRED SPEED!
 - SET FLOW1?

- **FLOW1=0**
 - SET FLOW1?

- **FLOWADJ=ON**
 - SET FLOW ADJ?

- **FLOWADJ=OFF**
 - SET FLOW ADJ?

- **WAIT...%**
 - ADJUSTMENT COMPLETE

- **SET LOCK?**
 - LOCK SET?

- **ENTR CODE:**
 - CONF CODE:

RESET

- **RESET ALL?**
 - ARE YOU SURE?
 - RESET ALL=YES
 - RESET ALL=NO

- **RESET SENS?**
 - ARE YOU SURE?
 - RESET SENS=YES
 - RESET SENS=NO

- **RESET ADJ?**
 - ARE YOU SURE?
 - RESET ADJ=YES
 - RESET ADJ=NO

- **GTC, GTM models only**
 - RESET NET?
 - ARE YOU SURE?
 - RESET NET=YES
 - RESET NET=NO

- **RESET TRBL?**
 - ARE YOU SURE?
 - RESET TRBL=YES
 - RESET TRBL=NO

Enable/disable flow adjustments.

Enter gain applied to airflow reading.

Enter offset applied to airflow reading.

Set OUT1 to % of full scale analog output.

Set OUT2 to % of full scale analog output.

Start field adjust wizard and enter number of integration samples to use.

The Field Adjust Wizard will now be engaged as outlined in the following steps.

The GAIN and OFF values will be updated, and FLOW ADJ=ON will be set if the wizard is successfully completed.

Wait...%” indicates progress while the Field Adjustment Wizard acquires a large number of samples of airflow rate and averages all of the readings. Display indicates “ADJUSTMENT COMPLETE” when adjustment is complete.

If you wish to review the adjustment made, simply navigate back to the SETUP menu and view the ADJUSTMENTS section.

Sets security level to LOW. In this mode, there is no prompt for a lock code. The last 4 digits of the board serial are used to unlock.

Sets security level to MED. In this mode, a user defined code is specified. In the event of loss of code, transmitter must be returned to EBTRON for unlock / reset.

Sets security level to HIGH. In this mode, a user defined code is specified. In the event of loss of code, transmitter must be returned to EBTRON for unlock / reset.

Enable/disable security lock.

Enter code and confirm code (NOTE: if LOCK SEC= HIGH, DO NOT lose code!)

Reset ALL changes back to factory defaults. Transmitter resets after completion.

Resets sensor data. Transmitter resets after completion.

Reset FLOW adjustments to GAIN = 1, OFF = 0, FLOW ADJ = OFF

Resets network settings to factory default.

Clears all disabled trouble settings.
FROM PART 5

1: NO PROBES
(example shown)

Displays unit serial number.
Displays main PCB serial number.
Displays probe serial numbers followed by a T if connected and functioning properly, and then followed by an F if not connected or not functioning properly.

TRBL CODE
Displays historical list of last 5 trouble codes encountered and their descriptions.
Note that spurious trouble codes may self-clear during normal operation, and this feature permits viewing them even after they have resolved.

TRBL HISTORY
Displays active trouble codes and their descriptions. Contact EBTRON customer service for recommended service information.
Set DSBL TRBL=YES to ignore currently displayed TRBL alarm. To disable all trouble codes, see SETUP -> DISPLAY -> LCD TRBL.

SERIAL NUMBERS

UNIT MAN 1
Displays unit serial number.

BRD MAN 1
Displays main PCB serial number.

C1 MAN 1

C2 MAN 1

C3 MAN 1

C4 MAN 1

SENS VELOCITY
For sensors =1 to 9, A to G (number of sensors dependent on sensor type).

SENS TEMP
For sensors =1 to 9, A to G (number of sensors dependent on sensor type).

SENS VOLTS
For sensors =1 to 9, A to G (number of sensors dependent on sensor type).

PROBE TYPE
Type "P" for "P" probes, Type "B" for Bleed sensors.
NOTES:
1. OUTPUT 2 CAN BE SET AS TEMPERATURE OR AS AN ALARM. ALARM CAN BE SET AS ACTIVE HIGH OR ACTIVE LOW.
2. CONNECT OUTPUT SIGNAL CABLE DRAINS TO EARTH GROUND AT ONE END OF EACH CABLE ONLY.
3. RS-485 COM CONNECTION MAY USE A SINGLE CONDUCTOR.
4. ON MULTIPLE TRANSMITTER INSTALLATIONS WITH A COMMON 24VAC SOURCE, WIRE 24 VAC POWER IN-PHASE TO THE SAME TERMINALS ON ALL TRANSMITTERS (e.g.: L1 to L1, L2 to L2).